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A method for calculating thermodynamic properties of pure liquids according to the 
significant structure theory of liquids is presented. This involves an iterative method for 
finding a common tangent at two points on a complex surface. Also, a generalization of 
Gauss’s regula fahi method is developed to solve sets of nonlinear equations. 

I. INTRODUCTION 

During the past decade the significant structure theory of liquids has been 
developed by Henry Eyring and his coworkers [l]. The same basic theory has been 
applied to a wide range of liquids, from the ideal gases [2] to water [3]. It has been 
successfully used to describe thermodynamic and transport properties of liquids [4] 
and mixtures [5]. 

Along with the development of the theories several specific numerical techniques 
have been developed, but have not been reported. In this paper we will present 
these methods. 

II. VAPOR PRESSURE 

The significant structure theory of liquids provides a description of the liquid state 
through use of a partition function,& . 

The thermodynamic properties are based on the equation 

A = -RTlnfi, (11 

where A is the Helmholtz free energy. The partition function is dependent upon 
temperature and volume so that the helmholtz free energy can thus, be considered 
as a surface with temperature and volume as independent variables. The partial 
derivatives and curvature of this surface are the other thermodynamic variables. 
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FIG. 1. Helmholtz free energy isotherms at melting and boiling points. Straight lines are the 
vapor pressure tangents. 

The details of the significant structure theory need not concern us in this 
discussion. All we need to know is the general shape of the A surface. Figure 1 
diagramatically shows several isotherms as they cut the A surface. In general, there 
are three dips but only two minima. They occur at the solid volume V, , the liquid 
volume V, , and the gas volume V, . The slope of these isotherms at any point is 
the pressure, since 

(aA/aV)Z- = --p. (2) 

The equilibrium vapor pressure is represented by a common tangent between the 
liquid volume and the gas volume. At each point of tangency the pressure is 
necessarily equal. One of the major computational problems of significant structure 
theory is finding this tangent. Once the vapor pressure tangent is known, the 
molar volume is specified and so are all of the other thermodynamic variables since 
they are functions of temperature and volume. 

Several numerical methods have been developed to find this tangent. We will 
describe a Newton’s method of slope matching which has been the most widely 
used method. A successful trial and error hunting method has also been developed, 
but it is slower than the quadratic convergence of the Newton’s method. 

III. NEWTON’S METHOD FOR SLOPE MATCHING 

To find the common tangent between the gas and liquid volumes (Fig. 1) the 
following iterative procedure is followed. 
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At the initial guesses of values of the gas and liquid volumes Vgi and Vti the 
helmholtz free energy is calculated A, , At. An approximate vapor pressure is 
calculated by 

Pa i = -(A,” - Aei)/( V,” - Vei), (3) 
which is the slope of a line connecting the initial points. Next the pressure P, is 
calculated at each of these points by evaluating -(aA/aV), . If the calculated 
pressures are not the same as the approximate slope the line is not a common 
tangent. 

Improved values of V, and V! are found by finding the points at which the 
calculated pressure P, is equal to the approximate vapor pressure P, . This is done 
by a Newton’s method iteration on the volume 

v, = v, - (P, - P,)/(aP/av),, (4) 

where (aP/aV), is the second derivative of A with respect to volume. Usually less 
than 20 iterations are necessary in order to get a 5-6 significant figure matching of 
Pa and P, . 

With the improved values of V, and Ve the approximate vapor pressure is once 
again calculated [Eq. (3)], and the procedure repeated if the new line is not a 
tangent. Usually less than 10 iterations of this type are necessary to find a tangent 
that has 4-5 significant figures. 

The region of convergence is bounded by the region where (aP/aV), is negative. 
In the liquid volume region this may be rather small so a careful initial guess of V, 
is necessary. Usually the improved value of the volume V, is checked to be sure it 
remains within the region of convergence. The region of convergence for the gas 
volume is quite large. The only consideration is that V, is large enough to insure 
that Eq. (3) has a positive result. 

The calculation is performed on a UNIVAC 1108 computer and is written in 
double precision FORTRAN V [6]. This means the calculation is done with 64-bit 
or 16-decimal place accuracy. This is necessary because during the iteration of the 
volume [Eq. (4)] very small changes of the volume are necessary in order to match 
P, and P, . The pressure changes very rapidly in the region of the liquid minimum. 
So that a small change in the volume will change the pressure from positive to 
negative. Using this precision we have been able to converge to vapor pressures of 
1.0 x IO-lo atm. When the approximate pressure Pa is smaller the increment of 
the volume is less than lo-l4 cc and convergence is impossible. 

IV. PARAMETER ADJUSTMENT 

The second computational problem facing significant structure theory is the 
refinement of parameters. The properties of a liquid as described by the significant 
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structure model are dependent upon five parameters. Good estimations of these 
parameters can easily be made, but for complex liquids some refinement is 
necessary. In many cases these slight adjustments can be made by trial and error, 
but not in all cases. 

The partition function for a simple liquid is written as follows: 

eE,IRT 

f, = (1 _ e-e/T)3 @) 

f;, = (27m~kT/h~)~~~ (eN/ V), (7) 

where V, T, N, R are, respectively, the molar volume, temperature, Avogadro’s 
number, and the gas constant; m, h, k are, respectively, the mass of a molecule, 
Planck’s constant, and Boltzmann’s constant. The parameters are a, n, E, , V, , 
and 8. 

The parameter a is a dimensionless constant that is a measure of the cooperative 
effect on the positional degeneracy. The parameter n is another dimensionless 
constant that is a measure of the amount of positional degeneracy possible. For 
spherical molecules it is approximately equal to the number of neighboring 
positions or about twelve. The parameters Es, V, , and 0 are the energy of 
sublimation, molar volume of the solid at the melting point and the Einstein 
characteristic temperature. 

Good estimates of E, , V, , and 8 are the experimentally determined values for 
the solid state. Since the Debye characteristic B. is usually tabulated, the following 
rule of thumb is used. 

eE = ge, (8) 

Estimates for a and n can be made by assuming that the liquid has the same 
degeneracy as a simple liquid such as argon. The parameters are then scaled for a 
difference in hole size and cooperative effect. Thus, the ratio n/V, should be constant 
and in fact for the inert gases, methane and nitrogen the ratio is nearly constant 
with an average of 0.473. In a similar way the ratio aE,Vs/RTmp is also a constant 
with an average of 1.55. Since the values of a and it have been calculated theoret- 
ically for argon [7], the values for argon are used. 

If the melting point TmD energy of sublimation E, and volume of the solid V, 
are known, the parameters a and n can be estimated. 

n -n cm2 - ( 1 V Gemi) = 0.432 x Vs(cad) (9) s Argon 
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There are a number of other methods that give an estimated set of parameters. 
They are the benzene technique [8], two-temperature technique [8], Seoul method 
[3], and the simplified method [9]. They are all similar in that they start with several 
equilibrium conditions expressed in terms of the significant structure model 
partition function. The resulting equations are nonlinear and various approxi- 
mations are made in order to extract the solutions. All of these methods provide 
good approximate parameter sets, but they suffer from the necessary approximation 
and are usually applicable to certain types of liquids using fixed equilibrium con- 
ditions. We will describe a more general method that gives a refined parameter set. 

V. REGULA FALSI 

Any thermodynamic property at a fixed temperature and volume is a function 
of the parameters. 

hi = f’dy,) (11) 

where Rki is an observable property, Fk is the significant structure model expression 
for the property and Yi is a column vector of the parameters yij . If P, is the 
experimentally observed value of the property we want the following conditions 
to hold: 

D,(Y,) = P, - F,(Y,) = 0. (13) 

There will always be enough thermodynamic properties so that a set of n equations 
(Eq. 13) in n unknowns can be formed. The solution of this set of equations will be 
the desired parameters. 

As stated previously, this set of equations (I 3) is nonlinear and cannot be solved 
analytically. We are forced to use a numerical method. A generalization of Newton’s 
method would work, but a Jacobi matrix of the partial derivatives must be formed. 
Because the expressions Fk are themselves derivatives of complex functions these 
derivatives with respect to the parameters are quite formidable. Also, any change 
in the partition function would require these to be reformed. 

Another method known as the regula falsi or secant method is available [lo]. 
It has not, as far as the authors could determine, been generalized for more than 
one variable. The criterion for convergence and other mathematical questions also 
have not been thoroughly investigated. Kawalik and Osborne [ll] present a 
discussion for the Gauss Algorithm which is similar to this approach. 
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For the cases we have studied there have been no convergence problems. 
The regula falsi method is based on a linear approximation to the function. 

The solution of the equation set (13) is a minimum of the Dk surface. To find the 
minimum a plane approximation in Yi space is formed through the n + 1 points Yi . 
Where this plane crosses zero is the improved point. One of the old points is 
discarded and a new plane formed. The procedure is repeated until the minimum 
is found. 

Assume that n + 1 approximate solutions to equation set (13) are known: 

x = {Y,Y, ... Y,+l>. (14) 

X is the n by IZ + 1 matrix of these approximate points. Then make a linear 
approximation to each function Dk . 

n+1 

DrWi) = 1 Qim 3 (15) 
i=O 

There are n + 1 linear equations of the form D,, = Qak or D = QA with 
D = (D1 , D, ,..., D,n+I) and A = (a,, a2 ,..., a,,,). The function DR must be 
evaluated for each approximate point Yi . Since this is a linear set of equations, it is 
easily solved. 

To find the next approximate set of parameters Y,,, , the set of linear equations 

or Xa = 0 

is where X = Yn+2 solved for the new parameters yi’. The point farthest away 
from the new point is discarded and the procedure repeated. Distance is measured 
as 

d = (tl (vi’ - ~xi)‘)l’~, (17) 

Since this method involves only linear equations a general program can easily 
be written [6]. Only the functions Dk need to be changed if a different set of 
equations were to be solved. 
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In applying this method we have found that the best thermodynamic property 
set is vapor pressure P, molar volume V, and the entropy. This set is used to 
adjust Es , V, , and 19. The parameters a and n do not strongly affect the thermo- 
dynamic properties and are adjusted by finding the minimum values necessary for 
convergence in the vapor pressure calculation at the melting point. The three 
parameters may be considered simultaneously or independently solved. Somewhat 
better results are found if each parameter is solved for independently keeping the 
other parameters constant. The procedure is repeated until a self-consistent set is 
found. It is necessary to perform a vapor pressure convergence to calculate the 
thermodynamic functions, Fk . 

TABLE I 
Two-Dimensional Case Showing Convergence of E, for Liquid Toluene 

Iteration 

1 

2 

3 

4 

E, (cat/mole) D” (atm x 10e2) 

11009.5 1.97 
1101 I .o 1.95 
11011.0 I .95 
11161.7 0.329 
11161.7 0.329 
11192.3 0.0597 
11199.1 0.0019 

DlfY%) 
--___ 

52.1 
51.6 
51.6 
8.7 
8.7 
1.58 
0.05 

0 See Eq. (13). The vapor pressure is used to adjust Es. 
b This is the percentage error. 

TABLE II 
Example of Approach to Self-Consistent Set of Parameters for Toluene 

Pass 0 (deg) Es (cal/mole) vs (cc) C” 

initial 38.561 
1 39.701 
2 39.123 
3 39.415 
4 39.345 
5 39.362 
6 39.357 
7 39.359 
8 39.359 

- -~ ~~~ 
11009.5 
11199.1 
11097.6 
11122.1 
11116.2 
11117.6 
11117.3 
11117.4 
11117.3 

92.068 - 
91.278 109.5 
91.212 58.6 
91.218 14.2 
91.217 3.45 
91.217 0.86 
91.217 0.22 
91.217 0.056 
91.217 0.014 

a Root mean square change defined as 
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An example of the regula falsi convergence is given in Table I. The parameter E, 
for liquid toluene was adjusted to give the experimentally observed vapor pressure 
at a specified temperature and volume. The results of the complete calculation are 
summarized in Table II. During each pass each of the parameters was adjusted 
independently using the regula falsi iteration. 

The procedure we have described is quite general and could be applied to other 
systems. We have not used any optimization such as least squares to refine the 
parameters. This is a parameter fixing method and should not be misunderstood 
to be a curve fitting procedure since the minimum number of experimental 
properties are used. 
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